Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pediatr Radiol ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483592

RESUMO

Human factors engineering involves the study and development of methods aimed at enhancing performance, improving safety, and optimizing user satisfaction. The focus of human factors engineering encompasses the design of work environments and an understanding of human mental processes to prevent errors. In this review, we summarize the history, applications, and impacts of human factors engineering on the healthcare field. To illustrate these applications and impacts, we provide several examples of how successful integration of a human factors engineer in our pediatric radiology department has positively impacted various projects. The successful integration of human factors engineering expertise has contributed to projects including improving response times for portable radiography requests, deploying COVID-19 response resources, informing the redesign of scheduling workflows, and implementation of a virtual ergonomics program for remote workers. In sum, the integration of human factors engineering insight into our department has resulted in tangible benefits and has also positioned us as proactive contributors to broader hospital-wide improvements.

2.
J Hosp Med ; 18(11): 994-998, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37811956

RESUMO

Alarm fatigue (and resultant alarm nonresponse) threatens the safety of hospitalized patients. Historically threats to patient safety, including alarm fatigue, have been evaluated using a Safety I perspective analyzing rare events such as failure to respond to patients' critical alarms. Safety II approaches call for learning from the everyday adaptations clinicians make to keep patients safe. To identify such sources of resilience in alarm systems, we conducted 59 in situ simulations of a critical hypoxemic-event alarm in medical/surgical and intensive care units at a tertiary care pediatric hospital between December 2019 and May 2022. Response timing, observations of the environment, and postsimulation debrief interviews were captured. Four primary means of successful alarm responses were mapped to domains of Systems Engineering Initiative for Patient Safety framework to inform alarm system design and improvement.


Assuntos
Alarmes Clínicos , Humanos , Criança , Unidades de Terapia Intensiva , Segurança do Paciente , Falha de Equipamento , Monitorização Fisiológica
3.
Hosp Pediatr ; 11(7): 703-710, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34074710

RESUMO

BACKGROUND AND OBJECTIVES: Physiologic monitor alarms occur at high rates in children's hospitals; ≤1% are actionable. The burden of alarms has implications for patient safety and is challenging to measure directly. Nurse workload, measured by using a version of the National Aeronautics and Space Administration Task Load Index (NASA-TLX) validated among nurses, is a useful indicator of work burden that has been associated with patient outcomes. A recent study revealed that 5-point increases in the NASA-TLX score were associated with a 22% increased risk in missed nursing care. Our objective was to measure the relationship between alarm count and nurse workload by using the NASA-TLX. METHODS: We conducted a repeated cross-sectional study of pediatric nurses in a tertiary care children's hospital to measure the association between NASA-TLX workload evaluations (using the nurse-validated scale) and alarm count in the 2 hours preceding NASA-TLX administration. Using a multivariable mixed-effects regression accounting for nurse-level clustering, we modeled the adjusted association of alarm count with workload. RESULTS: The NASA-TLX score was assessed in 26 nurses during 394 nursing shifts over a 2-month period. In adjusted regression models, experiencing >40 alarms in the preceding 2 hours was associated with a 5.5 point increase (95% confidence interval 5.2 to 5.7; P < .001) in subjective workload. CONCLUSION: Alarm count in the preceding 2 hours is associated with a significant increase in subjective nurse workload that exceeds the threshold associated with increased risk of missed nursing care and potential patient harm.


Assuntos
Alarmes Clínicos , Enfermeiras e Enfermeiros , Criança , Estudos Transversais , Hospitais Pediátricos , Humanos , Carga de Trabalho
4.
Biomed Instrum Technol ; 54(6): 389-396, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33339028

RESUMO

Evaluating the clinical impacts of healthcare alarm management systems plays a critical role in assessing newly implemented monitoring technology, exposing latent threats to patient safety, and identifying opportunities for system improvement. We describe a novel, accurate, rapidly implementable, and readily reproducible in situ simulation approach to measure alarm response times and rates without the challenges and expense of video analysis. An interprofessional team consisting of biomedical engineers, human factors engineers, information technology specialists, nurses, physicians, facilitators from the hospital's simulation center, clinical informaticians, and hospital administrative leadership worked with three units at a pediatric hospital to design and conduct the simulations. Existing hospital technology was used to transmit a simulated, unambiguously critical alarm that appeared to originate from an actual patient to the nurse's mobile device, and discreet observers measured responses. Simulation observational data can be used to design and evaluate quality improvement efforts to address alarm responsiveness and to benchmark performance of different alarm communication systems.


Assuntos
Alarmes Clínicos , Criança , Hospitais Pediátricos , Humanos , Monitorização Fisiológica , Melhoria de Qualidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...